Hessians
Hessians are a crucial ingredient in NewtonSolver
s and SimpleSolvers.NewtonOptimizerState
s.
using SimpleSolvers
using LinearAlgebra: norm
x = rand(3)
obj = MultivariateObjective(x -> norm(x - vcat(0., 0., 1.)) ^ 2, x)
hes = HessianAutodiff(obj, x)
HessianAutodiff{Float64, Main.var"#1#2", Matrix{Float64}, ForwardDiff.HessianConfig{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}, 3}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}}}}(Main.var"#1#2"(), [NaN NaN NaN; NaN NaN NaN; NaN NaN NaN], ForwardDiff.HessianConfig{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}, 3}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}}}(ForwardDiff.JacobianConfig{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}}}((Partials(1.0, 0.0, 0.0), Partials(0.0, 1.0, 0.0), Partials(0.0, 0.0, 1.0)), ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}[Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(6.95171462023273e-310,6.95174885566977e-310,6.9517146202335e-310,6.95174885566977e-310), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(6.9517146202343e-310,6.95174885566977e-310,6.9517444547575e-310,6.95174885567056e-310), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(6.9517444547575e-310,6.95174885567056e-310,6.95171462024064e-310,6.95174885566977e-310)]), ForwardDiff.GradientConfig{ForwardDiff.Tag{Main.var"#1#2", Float64}, ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}, 3}}}((Partials(Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.0,0.0,0.0,0.0), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(0.0,0.0,0.0,0.0), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(0.0,0.0,0.0,0.0)), Partials(Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(0.0,0.0,0.0,0.0), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.0,0.0,0.0,0.0), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(0.0,0.0,0.0,0.0)), Partials(Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(0.0,0.0,0.0,0.0), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(0.0,0.0,0.0,0.0), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.0,0.0,0.0,0.0))), ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}, 3}[Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(0.0,5.0e-324,5.0e-324,1.5e-323),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.5e-323,2.5e-323,2.5e-323,1.5e-323),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(4.0e-323,4.0e-323,5.0e-323,5.0e-323),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(4.0e-323,6.4e-323,6.4e-323,7.4e-323)), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(8.0e-323,8.4e-323,9.0e-323,9.4e-323),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.0e-322,1.04e-322,1.1e-322,1.14e-322),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.2e-322,1.24e-322,1.3e-322,1.33e-322),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.4e-322,1.43e-322,1.4e-322,1.53e-322)), Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.4e-322,1.63e-322,1.7e-322,1.73e-322),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.73e-322,1.83e-322,1.73e-322,1.93e-322),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(1.93e-322,2.03e-322,1.93e-322,2.1e-322),Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}}(2.1e-322,2.2e-322,2.1e-322,2.3e-322))])))
An instance of HessianAutodiff
stores a Hessian matrix:
hes.H
3×3 Matrix{Float64}:
NaN NaN NaN
NaN NaN NaN
NaN NaN NaN
The instance of HessianAutodiff
can be called:
hes(x)
3×3 Matrix{Float64}:
2.0 0.0 0.0
0.0 2.0 -1.11022e-16
5.55112e-17 1.11022e-16 2.0
Or equivalently with:
update!(hes, x)
This updates hes.H
:
hes.H
3×3 Matrix{Float64}:
2.0 0.0 0.0
0.0 2.0 -1.11022e-16
5.55112e-17 1.11022e-16 2.0
BFGS Hessian
using SimpleSolvers: initialize!
hes = HessianBFGS(obj, x)
initialize!(hes, x)
HessianBFGS{Float64, Vector{Float64}, Matrix{Float64}, MultivariateObjective{Float64, Vector{Float64}, Main.var"#1#2", GradientAutodiff{Float64, Main.var"#1#2", ForwardDiff.GradientConfig{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3, Vector{ForwardDiff.Dual{ForwardDiff.Tag{Main.var"#1#2", Float64}, Float64, 3}}}}, Float64, Vector{Float64}}}(MultivariateObjective (for vector-valued quantities only the first component is printed):
f(x) = NaN
g(x)₁ = 3.82e-01
x_f₁ = NaN
x_g₁ = 1.91e-01
number of f calls = 0
number of g calls = 1
, [NaN, NaN, NaN], [0.19090669902576285, 0.5256623915420473, 0.3905882754313441], [NaN, NaN, NaN], [NaN, NaN, NaN], [0.3818133980515257, 1.0513247830840946, -1.2188234491373118], [NaN, NaN, NaN], [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0], [0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0], [0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0], [0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0], [0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0], [0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0])
For computational reasons we save the inverse of the Hessian, it can be accessed by calling inv
:
inv(hes)
3×3 Matrix{Float64}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
Similarly to HessianAutodiff
we can call SimpleSolvers.update!
:
using SimpleSolvers: update!
update!(hes, x)