Solutions
GeometricIntegrators.Solutions.AtomicSolution
— TypeAbstract atomistic or single-step solution.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for DAE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for ODE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for partitioned DAE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for partitioned ODE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodPrint error for AtomicSolutions of equations not implemented, yet.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for DAE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for ODE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for partitioned DAE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for partitioned ODE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodPrint error for AtomicSolutions of solution not implemented, yet.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for partitioned SDE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for SDE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for partitioned SDE.
GeometricIntegrators.Solutions.AtomicSolution
— MethodCreate AtomicSolution for SDE.
GeometricIntegrators.Solutions.AtomicSolutionDAE
— TypeAtomic solution for an DAE.
Parameters
DT
: data typeTT
: time step typeAT
: array typeIT
: internal variable types
Fields
t
: time of current time stept̅
: time of previous time stepq
: current solution of qq̅
: previous solution of qq̃
: compensated summation error of qλ
: current solution of λλ̅
: previous solution of λv
: vector field of qv̅
: vector field of q̅u
: projective vector field of qu̅
: projective vector field of q̅
GeometricIntegrators.Solutions.AtomicSolutionODE
— TypeAtomic solution for an ODE.
Parameters
DT
: data typeTT
: time step typeAT
: array typeIT
: internal variable types
Fields
t
: time of current time stept̅
: time of previous time stepq
: current solution of qq̅
: previous solution of qq̃
: compensated summation error of qv
: vector field of qv̅
: vector field of q̅
GeometricIntegrators.Solutions.AtomicSolutionPDAE
— TypeAtomic solution for an PDAE.
Parameters
DT
: data typeTT
: time step typeAT
: array typeIT
: internal variable types
Fields
t
: time of current time stept̅
: time of previous time stepq
: current solution of qq̅
: previous solution of qq̃
: compensated summation error of qp
: current solution of pp̅
: previous solution of pp̃
: compensated summation error of pλ
: current solution of λλ̅
: previous solution of λv
: vector field of qv̅
: vector field of q̅f
: vector field of pf̅
: vector field of p̅u
: projective vector field of qu̅
: projective vector field of q̅g
: projective vector field of pg̅
: projective vector field of p̅
GeometricIntegrators.Solutions.AtomicSolutionPODE
— TypeAtomic solution for an PODE.
Parameters
DT
: data typeTT
: time step typeAT
: array typeIT
: internal variable types
Fields
t
: time of current time stept̅
: time of previous time stepq
: current solution of qq̅
: previous solution of qq̃
: compensated summation error of qp
: current solution of pp̅
: previous solution of pp̃
: compensated summation error of pv
: vector field of qv̅
: vector field of q̅f
: vector field of pf̅
: vector field of p̅
GeometricIntegrators.Solutions.AtomicSolutionPSDE
— TypeAtomic solution for an SDE.
Parameters
DT
: data typeTT
: time step typeAT
: array typeIT
: internal variable types
Fields
t
: time of current time stept̅
: time of previous time stepq
: current solution of qq̅
: previous solution of qq̃
: compensated summation error of qp
: current solution of pp̅
: previous solution of pp̃
: compensated summation error of pΔW
: Wiener process driving the stochastic process qΔZ
: Wiener process driving the stochastic process qK
: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions)
GeometricIntegrators.Solutions.AtomicSolutionSDE
— TypeAtomic solution for an SDE.
Parameters
DT
: data typeTT
: time step typeAT
: array typeIT
: internal variable types
Fields
t
: time of current time stept̅
: time of previous time stepq
: current solution of qq̅
: previous solution of qq̃
: compensated summation error of qΔW
: Wiener process driving the stochastic process qΔZ
: Wiener process driving the stochastic process qK
: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions)
GeometricIntegrators.Solutions.Solution
— MethodCreate solution for DAE.
GeometricIntegrators.Solutions.Solution
— MethodCreate solution for ODE.
GeometricIntegrators.Solutions.Solution
— MethodCreate solution for partitioned DAE.
GeometricIntegrators.Solutions.Solution
— MethodCreate solution for partitioned ODE.
GeometricIntegrators.Solutions.Solution
— MethodPrint error for solutions of equations not implemented, yet.
GeometricIntegrators.Solutions.Solution
— MethodCreate solution for SDE.
GeometricIntegrators.Solutions.Solution
— MethodCreate solution for PSDE.
GeometricIntegrators.Solutions.SolutionDAE
— TypeSolutionDAE
: Solution of a differential algebraic equation
Contains all fields necessary to store the solution of an DAE.
Fields
nd
: dimension of the dynamical variable $q$nm
: dimension of the constraint submanifoldnt
: number of time steps to storeni
: number of initial conditionst
: time stepsq
: solutionq[nd, nt+1, ni]
withq[:,0,:]
the initial conditionsλ
: Lagrange multiplierλ[nd, nt+1, ni]
ntime
: number of time steps to computensave
: store every nsave'th time step (default: 1)nwrite
: save data to disk after every nwrite'th time step (default: ntime)counter
: counter for copied solution entrieswoffset
: counter for file offseth5
: HDF5 file for storage
GeometricIntegrators.Solutions.SolutionODE
— TypeSolutionODE
: Solution of an ordinary differential equation
Contains all fields necessary to store the solution of an ODE.
Fields
nd
: dimension of the dynamical variable $q$nt
: number of time steps to storeni
: number of initial conditionst
: time stepsq
: solutionq[nd, nt+1, ni]
withq[:,0,:]
the initial conditionsntime
: number of time steps to computensave
: store every nsave'th time step (default: 1)nwrite
: save data to disk after every nwrite'th time step (default: ntime)counter
: counter for copied solution entrieswoffset
: counter for file offseth5
: HDF5 file for storage
GeometricIntegrators.Solutions.SolutionPDAE
— TypeSolutionPDAE
: Solution of a partitioned differential algebraic equation
Contains all fields necessary to store the solution of an PDAE.
Fields
nd
: dimension of the dynamical variable $q$nm
: dimension of the constraint submanifoldnt
: number of time steps to storeni
: number of initial conditionst
: time stepsq
: solutionq[nd, nt+1, ni]
withq[:,0,:]
the initial conditionsp
: solutionp[nd, nt+1, ni]
withp[:,0,:]
the initial conditionsλ
: Lagrange multiplierλ[nd, nt+1, ni]
ntime
: number of time steps to computensave
: store every nsave'th time step (default: 1)nwrite
: save data to disk after every nwrite'th time step (default: ntime)counter
: counter for copied solution entrieswoffset
: counter for file offseth5
: HDF5 file for storage
GeometricIntegrators.Solutions.SolutionPODE
— TypeSolutionPODE
: Solution of a partitioned ordinary differential equation
Contains all fields necessary to store the solution of an PODE.
Fields
nd
: dimension of the dynamical variable $q$nt
: number of time steps to storeni
: number of initial conditionst
: time stepsq
: solutionq[nd, nt+1, ni]
withq[:,0,:]
the initial conditionsp
: solutionp[nd, nt+1, ni]
withp[:,0,:]
the initial conditionsntime
: number of time steps to computensave
: store every nsave'th time step (default: 1)nwrite
: save data to disk after every nwrite'th time step (default: ntime)counter
: counter for copied solution entrieswoffset
: counter for file offseth5
: HDF5 file for storage
GeometricIntegrators.Solutions.SolutionPSDE
— TypeSolutionPSDE
: Solution of a partitioned stochastic differential equation
Contains all fields necessary to store the solution of a PSDE or SPSDE
Fields
conv
: type of the solution: :strong or :weaknd
: dimension of the dynamical variable $q$nm
: dimension of the Wiener processnt
: number of time steps to storens
: number of sample pathsni
: number of initial conditionst
: time stepsq
: solutionq[nd, nt+1, ns, ni]
withq[:,0,:,:]
the initial conditionsp
: solutionp[nd, nt+1, ns, ni]
withp[:,0,:,:]
the initial conditionsW
: Wiener process driving the stochastic processes q and pK
: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions),A = √(2 K Δt |log Δt|) due to Milstein & Tretyakov; if K=0 no truncation
ntime
: number of time steps to computensave
: save every nsave'th time step
GeometricIntegrators.Solutions.SolutionSDE
— TypeSolutionSDE
: Solution of a stochastic differential equation
Contains all fields necessary to store the solution of an SDE.
Fields
conv
: type of the solution: :strong or :weaknd
: dimension of the dynamical variable $q$nm
: dimension of the Wiener processnt
: number of time steps to storens
: number of sample pathst
: time stepsq
: solutionq[nd, nt+1, ns]
withq[:,0,:]
the initial conditionsW
: Wiener process driving the stochastic process qK
: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions),A = √(2 K Δt |log Δt|) due to Milstein & Tretyakov; if K=0 no truncation
ntime
: number of time steps to computensave
: save every nsave'th time step
GeometricIntegrators.Solutions.WienerProcess
— TypeType for holding the increments of a Wiener process
Fields:
nd
: dimension of the Wiener processnt
: number of increments in the DataSeriesns
: number of sample paths of the Wiener processΔt
: time increment of the TimeSeriesΔW
: variable storing the increments of the Wiener process over Δt, or the discrete random variable \hat{I}ΔZ
: variable holding the time integral of the Wiener process \int_{tk}^{tk+1} (W(t)-W(tk))dt, or the discrete random variable \tilde{I}
Parameters:
dType
: type of the elements of the increments of the Wiener processtType
: type of the time stepsN
: the number of dimensions of the arrays holding data in ΔW and ΔZCONV
: mode of convergence::strong
or:weak
GeometricIntegrators.Common.write_to_hdf5
— FunctionAppend solution to HDF5 file.
GeometricIntegrators.Common.write_to_hdf5
— FunctionAppend solution to HDF5 file.
GeometricIntegrators.Common.write_to_hdf5
— FunctionAppend solution to HDF5 file. soffset - start writing the solution q at the position soffset+2 woffset - start writing the increments ΔW, ΔZ at the position woffset+1
GeometricIntegrators.Common.write_to_hdf5
— MethodCreates HDF5 file, writes solution to file, and closes file.
GeometricIntegrators.Common.write_to_hdf5
— Methodwritetohdf5: Wrapper for saving Solution to HDF5 file.
GeometricIntegrators.Solutions.ParallelSolution
— MethodCreate parallel solution for DAE.
GeometricIntegrators.Solutions.ParallelSolution
— MethodCreate parallel solution for ODE.
GeometricIntegrators.Solutions.ParallelSolution
— MethodCreate parallel solution for partitioned DAE.
GeometricIntegrators.Solutions.ParallelSolution
— MethodCreate parallel solution for partitioned ODE.
GeometricIntegrators.Solutions.ParallelSolution
— MethodPrint error for parallel solutions of equations not implemented, yet.
GeometricIntegrators.Solutions.ParallelSolution
— MethodCreate parallel solution for SDE.
GeometricIntegrators.Solutions.ParallelSolution
— MethodCreate parallel solution for PSDE.
GeometricIntegrators.Solutions.copy_solution!
— MethodCopy solution from atomistic solution to solution object.
GeometricIntegrators.Solutions.createHDF5
— MethodcreateHDF5: Creates or opens HDF5 file.
GeometricIntegrators.Solutions.create_hdf5!
— MethodCreates HDF5 file and initialises datasets for solution object.
GeometricIntegrators.Solutions.create_hdf5
— MethodCreates HDF5 file and initialises datasets for deterministic solution object.
GeometricIntegrators.Solutions.create_hdf5
— MethodCreates HDF5 file and initialises datasets for stochastic solution object.
GeometricIntegrators.Solutions.save_attributes
— Methodsave_attributes: Saves attributes of Deterministic Solutions to HDF5 file.
GeometricIntegrators.Solutions.save_attributes
— Methodsave_attributes: Saves common attributes of Solution to HDF5 file.
GeometricIntegrators.Solutions.save_attributes
— Methodsave_attributes: Saves attributes of Stochastic Solutions to HDF5 file.