Solutions

GeometricIntegrators.Solutions.AtomicSolutionDAEType

Atomic solution for an DAE.

Parameters

  • DT: data type
  • TT: time step type
  • AT: array type
  • IT: internal variable types

Fields

  • t: time of current time step
  • : time of previous time step
  • q: current solution of q
  • : previous solution of q
  • : compensated summation error of q
  • λ: current solution of λ
  • λ̅: previous solution of λ
  • v: vector field of q
  • : vector field of q̅
  • u: projective vector field of q
  • : projective vector field of q̅
source
GeometricIntegrators.Solutions.AtomicSolutionODEType

Atomic solution for an ODE.

Parameters

  • DT: data type
  • TT: time step type
  • AT: array type
  • IT: internal variable types

Fields

  • t: time of current time step
  • : time of previous time step
  • q: current solution of q
  • : previous solution of q
  • : compensated summation error of q
  • v: vector field of q
  • : vector field of q̅
source
GeometricIntegrators.Solutions.AtomicSolutionPDAEType

Atomic solution for an PDAE.

Parameters

  • DT: data type
  • TT: time step type
  • AT: array type
  • IT: internal variable types

Fields

  • t: time of current time step
  • : time of previous time step
  • q: current solution of q
  • : previous solution of q
  • : compensated summation error of q
  • p: current solution of p
  • : previous solution of p
  • : compensated summation error of p
  • λ: current solution of λ
  • λ̅: previous solution of λ
  • v: vector field of q
  • : vector field of q̅
  • f: vector field of p
  • : vector field of p̅
  • u: projective vector field of q
  • : projective vector field of q̅
  • g: projective vector field of p
  • : projective vector field of p̅
source
GeometricIntegrators.Solutions.AtomicSolutionPODEType

Atomic solution for an PODE.

Parameters

  • DT: data type
  • TT: time step type
  • AT: array type
  • IT: internal variable types

Fields

  • t: time of current time step
  • : time of previous time step
  • q: current solution of q
  • : previous solution of q
  • : compensated summation error of q
  • p: current solution of p
  • : previous solution of p
  • : compensated summation error of p
  • v: vector field of q
  • : vector field of q̅
  • f: vector field of p
  • : vector field of p̅
source
GeometricIntegrators.Solutions.AtomicSolutionPSDEType

Atomic solution for an SDE.

Parameters

  • DT: data type
  • TT: time step type
  • AT: array type
  • IT: internal variable types

Fields

  • t: time of current time step
  • : time of previous time step
  • q: current solution of q
  • : previous solution of q
  • : compensated summation error of q
  • p: current solution of p
  • : previous solution of p
  • : compensated summation error of p
  • ΔW: Wiener process driving the stochastic process q
  • ΔZ: Wiener process driving the stochastic process q
  • K: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions)
source
GeometricIntegrators.Solutions.AtomicSolutionSDEType

Atomic solution for an SDE.

Parameters

  • DT: data type
  • TT: time step type
  • AT: array type
  • IT: internal variable types

Fields

  • t: time of current time step
  • : time of previous time step
  • q: current solution of q
  • : previous solution of q
  • : compensated summation error of q
  • ΔW: Wiener process driving the stochastic process q
  • ΔZ: Wiener process driving the stochastic process q
  • K: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions)
source
GeometricIntegrators.Solutions.SolutionDAEType

SolutionDAE: Solution of a differential algebraic equation

Contains all fields necessary to store the solution of an DAE.

Fields

  • nd: dimension of the dynamical variable $q$
  • nm: dimension of the constraint submanifold
  • nt: number of time steps to store
  • ni: number of initial conditions
  • t: time steps
  • q: solution q[nd, nt+1, ni] with q[:,0,:] the initial conditions
  • λ: Lagrange multiplier λ[nd, nt+1, ni]
  • ntime: number of time steps to compute
  • nsave: store every nsave'th time step (default: 1)
  • nwrite: save data to disk after every nwrite'th time step (default: ntime)
  • counter: counter for copied solution entries
  • woffset: counter for file offset
  • h5: HDF5 file for storage
source
GeometricIntegrators.Solutions.SolutionODEType

SolutionODE: Solution of an ordinary differential equation

Contains all fields necessary to store the solution of an ODE.

Fields

  • nd: dimension of the dynamical variable $q$
  • nt: number of time steps to store
  • ni: number of initial conditions
  • t: time steps
  • q: solution q[nd, nt+1, ni] with q[:,0,:] the initial conditions
  • ntime: number of time steps to compute
  • nsave: store every nsave'th time step (default: 1)
  • nwrite: save data to disk after every nwrite'th time step (default: ntime)
  • counter: counter for copied solution entries
  • woffset: counter for file offset
  • h5: HDF5 file for storage
source
GeometricIntegrators.Solutions.SolutionPDAEType

SolutionPDAE: Solution of a partitioned differential algebraic equation

Contains all fields necessary to store the solution of an PDAE.

Fields

  • nd: dimension of the dynamical variable $q$
  • nm: dimension of the constraint submanifold
  • nt: number of time steps to store
  • ni: number of initial conditions
  • t: time steps
  • q: solution q[nd, nt+1, ni] with q[:,0,:] the initial conditions
  • p: solution p[nd, nt+1, ni] with p[:,0,:] the initial conditions
  • λ: Lagrange multiplier λ[nd, nt+1, ni]
  • ntime: number of time steps to compute
  • nsave: store every nsave'th time step (default: 1)
  • nwrite: save data to disk after every nwrite'th time step (default: ntime)
  • counter: counter for copied solution entries
  • woffset: counter for file offset
  • h5: HDF5 file for storage
source
GeometricIntegrators.Solutions.SolutionPODEType

SolutionPODE: Solution of a partitioned ordinary differential equation

Contains all fields necessary to store the solution of an PODE.

Fields

  • nd: dimension of the dynamical variable $q$
  • nt: number of time steps to store
  • ni: number of initial conditions
  • t: time steps
  • q: solution q[nd, nt+1, ni] with q[:,0,:] the initial conditions
  • p: solution p[nd, nt+1, ni] with p[:,0,:] the initial conditions
  • ntime: number of time steps to compute
  • nsave: store every nsave'th time step (default: 1)
  • nwrite: save data to disk after every nwrite'th time step (default: ntime)
  • counter: counter for copied solution entries
  • woffset: counter for file offset
  • h5: HDF5 file for storage
source
GeometricIntegrators.Solutions.SolutionPSDEType

SolutionPSDE: Solution of a partitioned stochastic differential equation

Contains all fields necessary to store the solution of a PSDE or SPSDE

Fields

  • conv: type of the solution: :strong or :weak
  • nd: dimension of the dynamical variable $q$
  • nm: dimension of the Wiener process
  • nt: number of time steps to store
  • ns: number of sample paths
  • ni: number of initial conditions
  • t: time steps
  • q: solution q[nd, nt+1, ns, ni] with q[:,0,:,:] the initial conditions
  • p: solution p[nd, nt+1, ns, ni] with p[:,0,:,:] the initial conditions
  • W: Wiener process driving the stochastic processes q and p
  • K: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions),
  •   A = √(2 K Δt |log Δt|) due to Milstein & Tretyakov; if K=0 no truncation
  • ntime: number of time steps to compute
  • nsave: save every nsave'th time step
source
GeometricIntegrators.Solutions.SolutionSDEType

SolutionSDE: Solution of a stochastic differential equation

Contains all fields necessary to store the solution of an SDE.

Fields

  • conv: type of the solution: :strong or :weak
  • nd: dimension of the dynamical variable $q$
  • nm: dimension of the Wiener process
  • nt: number of time steps to store
  • ns: number of sample paths
  • t: time steps
  • q: solution q[nd, nt+1, ns] with q[:,0,:] the initial conditions
  • W: Wiener process driving the stochastic process q
  • K: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions),
  •   A = √(2 K Δt |log Δt|) due to Milstein & Tretyakov; if K=0 no truncation
  • ntime: number of time steps to compute
  • nsave: save every nsave'th time step
source
GeometricIntegrators.Solutions.WienerProcessType

Type for holding the increments of a Wiener process

Fields:

  • nd: dimension of the Wiener process
  • nt: number of increments in the DataSeries
  • ns: number of sample paths of the Wiener process
  • Δt: time increment of the TimeSeries
  • ΔW: variable storing the increments of the Wiener process over Δt, or the discrete random variable \hat{I}
  • ΔZ: variable holding the time integral of the Wiener process \int_{tk}^{tk+1} (W(t)-W(tk))dt, or the discrete random variable \tilde{I}

Parameters:

  • dType: type of the elements of the increments of the Wiener process
  • tType: type of the time steps
  • N: the number of dimensions of the arrays holding data in ΔW and ΔZ
  • CONV: mode of convergence: :strong or :weak
source