Solutions
GeometricIntegrators.Solutions.AtomicSolution — TypeAbstract atomistic or single-step solution.
GeometricIntegrators.Solutions.AtomicSolution — MethodPrint error for AtomicSolutions of equations not implemented, yet.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for DAE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for ODE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for partitioned DAE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for partitioned ODE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for PSDE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for SDE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for DAE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for ODE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for partitioned DAE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for partitioned ODE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for PSDE.
GeometricIntegrators.Solutions.AtomicSolution — MethodCreate AtomicSolution for SDE.
GeometricIntegrators.Solutions.AtomicSolutionDAE — TypeAtomic solution for an DAE.
Fields
t: time of current time stept̅: time of previous time stepq: current solution of qq̅: previous solution of qq̃: compensated summation error of qλ: current solution of λλ̅: previous solution of λv: vector field of qv̅: vector field of q̅u: projective vector field of qu̅: projective vector field of q̅
GeometricIntegrators.Solutions.AtomicSolutionODE — TypeAtomic solution for an ODE.
Fields
t: time of current time stept̅: time of previous time stepq: current solution of qq̅: previous solution of qq̃: compensated summation error of qv: vector field of qv̅: vector field of q̅
GeometricIntegrators.Solutions.AtomicSolutionPDAE — TypeAtomic solution for an PDAE.
Fields
t: time of current time stept̅: time of previous time stepq: current solution of qq̅: previous solution of qq̃: compensated summation error of qp: current solution of pp̅: previous solution of pp̃: compensated summation error of pλ: current solution of λλ̅: previous solution of λv: vector field of qv̅: vector field of q̅f: vector field of pf̅: vector field of p̅u: projective vector field of qu̅: projective vector field of q̅g: projective vector field of pg̅: projective vector field of p̅
GeometricIntegrators.Solutions.AtomicSolutionPODE — TypeAtomic solution for an PODE.
Fields
t: time of current time stept̅: time of previous time stepq: current solution of qq̅: previous solution of qq̃: compensated summation error of qp: current solution of pp̅: previous solution of pp̃: compensated summation error of pv: vector field of qv̅: vector field of q̅f: vector field of pf̅: vector field of p̅
GeometricIntegrators.Solutions.AtomicSolutionPSDE — TypeAtomic solution for an SDE.
Fields
t: time of current time stept̅: time of previous time stepq: current solution of qq̅: previous solution of qq̃: compensated summation error of qp: current solution of pp̅: previous solution of pp̃: compensated summation error of pΔW: Wiener process driving the stochastic process qΔZ: Wiener process driving the stochastic process qK: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions)
GeometricIntegrators.Solutions.AtomicSolutionSDE — TypeAtomic solution for an SDE.
Fields
t: time of current time stept̅: time of previous time stepq: current solution of qq̅: previous solution of qq̃: compensated summation error of qΔW: Wiener process driving the stochastic process qΔZ: Wiener process driving the stochastic process qK: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions)
GeometricIntegrators.Solutions.Solution — MethodCreate solution for DAE.
GeometricIntegrators.Solutions.Solution — MethodCreate solution for ODE.
GeometricIntegrators.Solutions.Solution — MethodCreate solution for partitioned DAE.
GeometricIntegrators.Solutions.Solution — MethodCreate solution for partitioned ODE.
GeometricIntegrators.Solutions.Solution — MethodPrint error for solutions of equations not implemented, yet.
GeometricIntegrators.Solutions.Solution — MethodCreate solution for SDE.
GeometricIntegrators.Solutions.Solution — MethodCreate solution for PSDE.
GeometricIntegrators.Solutions.SolutionDAE — TypeSolutionDAE: Solution of a differential algebraic equation
Contains all fields necessary to store the solution of an DAE.
Fields
nd: dimension of the dynamical variable $q$nm: dimension of the constraint submanifoldnt: number of time steps to storeni: number of initial conditionst: time stepsq: solutionq[nd, nt+1, ni]withq[:,0,:]the initial conditionsλ: Lagrange multiplierλ[nd, nt+1, ni]ntime: number of time steps to computensave: store every nsave'th time step (default: 1)nwrite: save data to disk after every nwrite'th time step (default: ntime)counter: counter for copied solution entrieswoffset: counter for file offseth5: HDF5 file for storage
GeometricIntegrators.Solutions.SolutionODE — TypeSolutionODE: Solution of an ordinary differential equation
Contains all fields necessary to store the solution of an ODE.
Fields
nd: dimension of the dynamical variable $q$nt: number of time steps to storeni: number of initial conditionst: time stepsq: solutionq[nd, nt+1, ni]withq[:,0,:]the initial conditionsntime: number of time steps to computensave: store every nsave'th time step (default: 1)nwrite: save data to disk after every nwrite'th time step (default: ntime)counter: counter for copied solution entrieswoffset: counter for file offseth5: HDF5 file for storage
GeometricIntegrators.Solutions.SolutionPDAE — TypeSolutionPDAE: Solution of a partitioned differential algebraic equation
Contains all fields necessary to store the solution of an PDAE.
Fields
nd: dimension of the dynamical variable $q$nm: dimension of the constraint submanifoldnt: number of time steps to storeni: number of initial conditionst: time stepsq: solutionq[nd, nt+1, ni]withq[:,0,:]the initial conditionsp: solutionp[nd, nt+1, ni]withp[:,0,:]the initial conditionsλ: Lagrange multiplierλ[nd, nt+1, ni]ntime: number of time steps to computensave: store every nsave'th time step (default: 1)nwrite: save data to disk after every nwrite'th time step (default: ntime)counter: counter for copied solution entrieswoffset: counter for file offseth5: HDF5 file for storage
GeometricIntegrators.Solutions.SolutionPODE — TypeSolutionPODE: Solution of a partitioned ordinary differential equation
Contains all fields necessary to store the solution of an PODE.
Fields
nd: dimension of the dynamical variable $q$nt: number of time steps to storeni: number of initial conditionst: time stepsq: solutionq[nd, nt+1, ni]withq[:,0,:]the initial conditionsp: solutionp[nd, nt+1, ni]withp[:,0,:]the initial conditionsntime: number of time steps to computensave: store every nsave'th time step (default: 1)nwrite: save data to disk after every nwrite'th time step (default: ntime)counter: counter for copied solution entrieswoffset: counter for file offseth5: HDF5 file for storage
GeometricIntegrators.Solutions.SolutionPSDE — TypeSolutionPSDE: Solution of a partitioned stochastic differential equation
Contains all fields necessary to store the solution of a PSDE or SPSDE
Fields
conv: type of the solution: :strong or :weaknd: dimension of the dynamical variable $q$nm: dimension of the Wiener processnt: number of time steps to storens: number of sample pathsni: number of initial conditionst: time stepsq: solutionq[nd, nt+1, ns, ni]withq[:,0,:,:]the initial conditionsp: solutionp[nd, nt+1, ns, ni]withp[:,0,:,:]the initial conditionsW: Wiener process driving the stochastic processes q and pK: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions),A = √(2 K Δt |log Δt|) due to Milstein & Tretyakov; if K=0 no truncationntime: number of time steps to computensave: save every nsave'th time step
GeometricIntegrators.Solutions.SolutionSDE — TypeSolutionSDE: Solution of a stochastic differential equation
Contains all fields necessary to store the solution of an SDE.
Fields
conv: type of the solution: :strong or :weaknd: dimension of the dynamical variable $q$nm: dimension of the Wiener processnt: number of time steps to storens: number of sample pathst: time stepsq: solutionq[nd, nt+1, ns]withq[:,0,:]the initial conditionsW: Wiener process driving the stochastic process qK: integer parameter defining the truncation of the increments of the Wiener process (for strong solutions),A = √(2 K Δt |log Δt|) due to Milstein & Tretyakov; if K=0 no truncationntime: number of time steps to computensave: save every nsave'th time step
GeometricIntegrators.Solutions.WienerProcess — TypeType for holding the increments of a Wiener process
Fields:
nd: dimension of the Wiener processnt: number of increments in the DataSeriesns: number of sample paths of the Wiener processΔt: time increment of the TimeSeriesΔW: variable storing the increments of the Wiener process over Δt, or the discrete random variable \hat{I}ΔZ: variable holding the time integral of the Wiener process \int_{tk}^{tk+1} (W(t)-W(tk))dt, or the discrete random variable \tilde{I}
Parameters:
dType: type of the elements of the increments of the Wiener processtType: type of the time stepsN: the number of dimensions of the arrays holding data in ΔW and ΔZCONV: mode of convergence::strongor:weak
GeometricIntegrators.CommonFunctions.write_to_hdf5 — FunctionAppend solution to HDF5 file. soffset - start writing the solution q at the position soffset+2 woffset - start writing the increments ΔW, ΔZ at the position woffset+1
GeometricIntegrators.CommonFunctions.write_to_hdf5 — FunctionAppend solution to HDF5 file.
GeometricIntegrators.CommonFunctions.write_to_hdf5 — FunctionAppend solution to HDF5 file.
GeometricIntegrators.CommonFunctions.write_to_hdf5 — MethodCreates HDF5 file, writes solution to file, and closes file.
GeometricIntegrators.CommonFunctions.write_to_hdf5 — Methodwritetohdf5: Wrapper for saving Solution to HDF5 file.
GeometricIntegrators.Solutions.ParallelSolution — MethodCreate parallel solution for DAE.
GeometricIntegrators.Solutions.ParallelSolution — MethodCreate parallel solution for ODE.
GeometricIntegrators.Solutions.ParallelSolution — MethodCreate parallel solution for partitioned DAE.
GeometricIntegrators.Solutions.ParallelSolution — MethodCreate parallel solution for partitioned ODE.
GeometricIntegrators.Solutions.ParallelSolution — MethodPrint error for parallel solutions of equations not implemented, yet.
GeometricIntegrators.Solutions.ParallelSolution — MethodCreate parallel solution for SDE.
GeometricIntegrators.Solutions.ParallelSolution — MethodCreate parallel solution for PSDE.
GeometricIntegrators.Solutions.copy_solution! — MethodCopy solution from atomistic solution to solution object.
GeometricIntegrators.Solutions.createHDF5 — MethodcreateHDF5: Creates or opens HDF5 file.
GeometricIntegrators.Solutions.create_hdf5! — MethodCreates HDF5 file and initialises datasets for solution object.
GeometricIntegrators.Solutions.create_hdf5 — MethodCreates HDF5 file and initialises datasets for deterministic solution object.
GeometricIntegrators.Solutions.create_hdf5 — MethodCreates HDF5 file and initialises datasets for stochastic solution object.
GeometricIntegrators.Solutions.save_attributes — Methodsave_attributes: Saves attributes of Deterministic Solutions to HDF5 file.
GeometricIntegrators.Solutions.save_attributes — Methodsave_attributes: Saves common attributes of Solution to HDF5 file.
GeometricIntegrators.Solutions.save_attributes — Methodsave_attributes: Saves attributes of Stochastic Solutions to HDF5 file.